Merging percolation on Zd and classical random graphs: Phase transition

نویسندگان

  • Tatyana S. Turova
  • Thomas Vallier
چکیده

We study a random graph model which is a superposition of bond percolation on Zd with parameter p, and a classical random graph G(n, c/n). We show that this model, being a homogeneous random graph, has a natural relation to the so-called “rank 1 case” of inhomogeneous random graphs. This allows us to use the newly developed theory of inhomogeneous random graphs to describe the phase diagram on the set of parameters c ≥ 0 and 0 ≤ p < pc, where pc = pc(d) is the critical probability for the bond percolation on Zd . The phase transition is of second order as in the classical random graph.We find the scaled size of the largest connected component in the supercritical regime. We also provide a sharp upper bound for the largest connected component in the subcritical regime. The latter is a new result for inhomogeneous random graphs with unbounded kernels. © 2009 Wiley Periodicals, Inc. Random Struct. Alg., 36, 185–217, 2010

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Merging percolation on Z and classical random graphs: Phase transition

We study a random graph model which is a superposition of the bond percolation model on Zd with probability p of an edge, and a classical random graph G(n, c/n). We show that this model, being a homogeneous random graph, has a natural relation to the so-called ”rank 1 case” of inhomogeneous random graphs. This allows us to use the newly developed theory of inhomogeneous random graphs to describ...

متن کامل

Merging percolation and classical random graphs : Phase transition in dimension 1

We study a random graph model which combines properties of the edge percolation model on Z d and a classical random graph G(n, c/n). We show that this model, being a homogeneous random graph, has a natural relation to the so-called " rank 1 case " of inhomogeneous random graphs. This allows us to use the newly developed theory of inhomogeneous random graphs to describe completely the phase diag...

متن کامل

Random nearest neighbor and influence graphs on Zd

Random nearest neighbor and influence graphs with vertex set Zd are defined and their percolation properties are studied. The nearest neighbor graph has (with probability 1) only finite connected components and a superexponentially decaying connectivity function. Influence graphs (which are related to energy minimization searches in disordered Ising models) have a percolation transition. © 1999...

متن کامل

Clique percolation in random graphs

As a generation of the classical percolation, clique percolation focuses on the connection of cliques in a graph, where the connection of two k cliques means that they share at least l<k vertices. In this paper we develop a theoretical approach to study clique percolation in Erdős-Rényi graphs, which gives not only the exact solutions of the critical point, but also the corresponding order para...

متن کامل

Random subgraphs of finite graphs: II. The lace expansion and the triangle condition

In a previous paper, we defined a version of the percolation triangle condition that is suitable for the analysis of bond percolation on a finite connected transitive graph, and showed that this triangle condition implies that the percolation phase transition has many features in common with the phase transition on the complete graph. In this paper, we use a new and simplified approach to the l...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Random Struct. Algorithms

دوره 36  شماره 

صفحات  -

تاریخ انتشار 2010